Fast group matching for MR fingerprinting reconstruction.
نویسندگان
چکیده
PURPOSE MR fingerprinting (MRF) is a technique for quantitative tissue mapping using pseudorandom measurements. To estimate tissue properties such as T1 , T2 , proton density, and B0 , the rapidly acquired data are compared against a large dictionary of Bloch simulations. This matching process can be a very computationally demanding portion of MRF reconstruction. THEORY AND METHODS We introduce a fast group matching algorithm (GRM) that exploits inherent correlation within MRF dictionaries to create highly clustered groupings of the elements. During matching, a group specific signature is first used to remove poor matching possibilities. Group principal component analysis (PCA) is used to evaluate all remaining tissue types. In vivo 3 Tesla brain data were used to validate the accuracy of our approach. RESULTS For a trueFISP sequence with over 196,000 dictionary elements, 1000 MRF samples, and image matrix of 128 × 128, GRM was able to map MR parameters within 2s using standard vendor computational resources. This is an order of magnitude faster than global PCA and nearly two orders of magnitude faster than direct matching, with comparable accuracy (1-2% relative error). CONCLUSION The proposed GRM method is a highly efficient model reduction technique for MRF matching and should enable clinically relevant reconstruction accuracy and time on standard vendor computational resources.
منابع مشابه
Deep Learning for Rapid Sparse MR Fingerprinting Reconstruction
PURPOSE: Demonstrate a novel fast method for reconstruction of multi-dimensional MR Fingerprinting (MRF) data using Deep Learning methods. METHODS: A neural network (NN) is defined using the TensorFlow framework and trained on simulated MRF data computed using the Bloch equations. The accuracy of the NN reconstruction of noisy data is compared to conventional MRF template matching as a function...
متن کاملAccelerated parameter mapping with compressed sensing: an alternative to MR fingerprinting
We introduce a method for MR parameter mapping based on three concepts: 1) an inversion recovery, variable flip angle acquisition strategy designed for speed, signal, and contrast; 2) a compressed sensing reconstruction which exploits spatiotemporal correlations through low rank regularization; and 3) a model-based optimization to simultaneously estimate proton density, T1, and T2 values from t...
متن کامل3D MR fingerprinting with accelerated stack-of-spirals and hybrid sliding-window and GRAPPA reconstruction
PURPOSE Whole-brain high-resolution quantitative imaging is extremely encoding intensive, and its rapid and robust acquisition remains a challenge. Here we present a 3D MR fingerprinting (MRF) acquisition with a hybrid sliding-window (SW) and GRAPPA reconstruction strategy to obtain high-resolution T1, T2 and proton density (PD) maps with whole brain coverage in a clinically feasible timeframe....
متن کاملMagnetic resonance fingerprinting (MRF) for rapid quantitative abdominal imaging
Target Audience This work targets those interested in fast quantitative imaging and abdominal MRI. Purpose Quantitative parameter measurement in the abdomen is extremely challenging due to the anatomy (large organs), field inhomogeneities and extreme physiological motion. Recently, we have introduced a revolutionary paradigm for MRI acquisition, reconstruction, and analysis of MR data, termed M...
متن کاملFast Least Square Matching
Least square matching (LSM) is one of the most accurate image matching methods in photogrammetry and remote sensing. The main disadvantage of the LSM is its high computational complexity due to large size of observation equations. To address this problem, in this paper a novel method, called fast least square matching (FLSM) is being presented. The main idea of the proposed FLSM is decreasing t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Magnetic resonance in medicine
دوره 74 2 شماره
صفحات -
تاریخ انتشار 2015